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Abstract—Imbalanced data is a common problem in machine
learning, affecting both small and big datasets. In small datasets,
SMOTE algorithms are typically used to handle this problem by
synthesising samples to oversample the minority class. However,
since SMOTE and its variants use the nearest neighbour algo-
rithm to produce these synthetic samples, it doesn’t inherently
scale well to big datasets. To address this issue, we built four
scalable SMOTE algorithms in PySpark and evaluated their
performance using a Decision Tree classifier. The algorithms
were tested on two imbalanced datasets. Our research found
that these four methods work well in pySpark, and allow the
SMOTE algorithm to be parallelized. Therefore, producing a
fast and scalable SMOTE algorithm is important and provides
benefit to the big data community.

Index Terms—Big Data, Imbalanced Data, SMOTE, PySpark,
ENN

I. INTRODUCTION AND BACKGROUND

Data Scientists often have to handle imbalanced datasets,
where the cardinality of one class is significantly lower than
the other classes. This problem occurs often in medical or
fraud datasets where the positive class like a cancer diagnosis
or credit card fraud is infrequent. There are multiple ways
of dealing with this, including under-sampling and over-
sampling. Chawla et al [1] introduced the SMOTE algorithm,
which oversamples the minority class using synthetic data.
For each point in the minority class, a random neighbor
is selected from its K (usually 5) nearest neighbors. The
synthetic sample is then computed as a random point in the
feature space between the original point and the randomly
chosen neighbor. This process can be repeated to generate
more synthetic samples as necessary. Chawla et al found that
this method of oversampling the minority class combined with
the undersampling of the majority class outperformed simply
varying class priors in Naive Bayes.

Since the SMOTE algorithm was published, there have
been many variants of it. AdaSYN (Haibo et al, [2]), is
an approach similar to SMOTE, except that it generates a
different number of samples depending on an estimate of
the local distribution of the class to be oversampled. There
is also BorderlineSMOTE (Han et al [3] ), again which is
similar to SMOTE, however only minority samples near the
borderline are over-sampled. Furthermore, a combination of
SMOTE and undersampling on the synthetic samples has

been tested by Batista et al [4]. In their paper, they tested a
combination of SMOTE & Edited-Nearest-Neighbors (ENN).
ENN is an undersampling algorithm which essentially removes
points which are misclassified by their nearest neighbors. The
combination of these two algorithms yielded excellent results
for handling imbalanced datasets.

However, these algorithms are not inherently scalable to
big data. The nearest neighbors algorithm is computationally
expensive, comparing each point with every other point in the
dataset. This can be shown by trying running the SMOTE
algorithm on the large 5,000,000 record dataset sequentially.
Running this on DataBricks results in an out of memory error.
We can see that a innovative, scalable SMOTE solution is re-
quired. Juez-Gil et al [5], developed Approx-SMOTE, a highly
scalable version of SMOTE which uses approximate nearest
neighbor search. Additionally, an exact version, SMOTE-BD
was also introduced by Basgall et al [6], which uses a exact
nearest neighbors algorithm. Both of these solution are written
in Scala.

SMOTE-BD uses knn-IS, an spark-based KNN produced by
Mailo et al [7]. This is implented as a classifier, in which the
test set is broadcast to each map function to compare every
test sample against the whole training set. This exact solution
requires the test set to fit into memory, which works because
the test set is usually the smaller of the two sets. This is also
the case for SMOTE, as the minority set is always the smallest
subset of the whole dataset. Determing the distance between
any two instances is performed by calculating Euclidean
distance between the pair.

This paper details our approach in writing four SMOTE
variant algorithms for PySpark, the Python API for Apache
Spark. The algorithms we implemented are:

• Local SMOTE: A local solution, which applies the
imblearn library SMOTE to partitions of the dataset.

• Approximate SMOTE: A scalable solution, which uses
an approximate nearest neighbor algorithm.

• Exact SMOTE: A scalable solution, which uses an exact
nearest neighbor algorithm.

• Exact SMOTE-ENN: A ensemble solution which com-
bines Exact-SMOTE with ENN.

The rest of this paper is structured as follows. Section II de-
tails the methodology and reasoning behind our approach. Sec-



tion III details the experiments performed, including metrics
and baselines. Finally, Section IV will contain a description of
the main findings from the research, including an interpretation
of these results.

II. PROPOSED METHODOLOGY

This section details the algorithms behind our approaches
and why we chose them. For each algorithm, we can per-
form speed and metric (defined in III) based comparisons to
determine the most optimal algorithm. Doing this allows us
to solve our problem of building a highly scalable accurate
SMOTE solution for big data.

Before analysis, pre-processing of the data was required.
As we are using Euclidean distance to determine the nearest
neighbors, we needed to normalize the data. We used MinMax
scaling for this, scaling every point to be between 0 and
1. Moreover, Euclidean distance does not perform well with
categorical data. We encoded categorical features such that
distances between the values were represented numerically.
For example, 1 feature ’Vehicle_Age’ contained the values:
’<1 year’, ’1-2 years’ & ’>2years’. These were encoded as 0,
1, & 2 respectively. Any features which could not be encoded
in this way were dropped from the dataset.

Once the nearest neighbors have been obtained, both ’Ap-
proximate SMOTE’ and ’Exact SMOTE’ generate the syne-
thetic samples in the same way. We have implemented a UDF
to do this, which uses vector maths to calculate a random point
in the feature space between the point and it’s neighbor. This
UDF is the mapped to our DataFrame using a select statement.
To synthesise any categorical features, the results are rounded
to the closest category.

A. Local SMOTE

Initially, we developed a ’Local’ solution to the problem.
This involves applying SMOTE to partitions of the dataset
and combining the results at the end. To do this, we used
Imblearn, a python library for handling imbalanced datasets
[8]. We chose to split our pySpark DataFrame into 10 sections,
and applied Imblearns SMOTE-NC algorithm to each of those.
SMOTE-NC is a variant of SMOTE that handles categorical
data. Since this is a ’Local’ solution, the suitability of this
solution to our problem is not optimal, however it serves as a
secondary baseline to compare to the ’Global’ approaches we
produced.

B. Approximate SMOTE

The first ’Global’ solution developed was a pySpark ver-
sion of Approx-SMOTE. This algorithm uses an approximate
version of the nearest neighbor algorithm. In our solution,
this is implemented using a Locality Sensitive Hashing (LSH)
technique [9]. The general idea of LSH is to use a family
of functions (LSH families) to hash data points into buckets,
so that the data points which are close to each other are in
the same buckets, while data points that are far away from
each other are very likely to be in different buckets. More
specifically, we are using Bucketed Random Projection, which

is the LSH family for Euclidean Distance. This allows us
to use ApproxSimilarityJoin to perform a self-join on this
projection, which returns pairs of rows in the dataset whose
distance is smaller than a user defined threshold. In our case
this threshold is infinity as we want to check the approximate
distance between all rows. This method allows us to scale
nearest neighbours to big data and theoretically, without a loss
of speed. This method is directly from the PySpark library so
is highly optimised.

C. Exact SMOTE

The second ’Global’ solution developed was a pySpark
version of the Exact-SMOTE algorithm. To do this, we used
a KDTree [10] data structure to perform the nearest neighbor
search.

This tree is constructed by recursively partitioning the fea-
ture space into smaller regions. At each partition a dimension
is chosen that effectively splits the feature space in half. This is
done by choosing the median in that dimension, and splitting
the points on either side of this median. This tree can be built
in worse case O(k log(n)) time, where k is the number of
dimensions. The data structure can then be queried by starting
at the root node and descending through the tree, choosing the
subtree closest to the query point. As this tree is balanced, we
can prune almost half the data points at each split as it is likely
that those points are not the nearest neighbor. Due to it’s speed
and efficiency, we have used a KDTree for the exact nearest
neighbor algorithm. If a datasets contains a sufficiently large
number of points compared to the number of dimensions, the
KDTree data structure allows for a more efficient querying
of nearest neighbors than the exhaustive search used in knn-
IS and SMOTE-BD. Since we are dealing with big data, the
number of points in the dataset is consistently large.

Initializing this KDTree structure is very fast, as seen in
Fig. 1. This shows the time taken to initialise a KDTree
with varying dataset sizes. Each of these datasets had 10
dimensions. We can see that a dataset with 1,000,000 points
in 10 dimensions takes just over 4 seconds to initialise the
KDTree. This is very fast. However, the bottleneck of the
nearest neighbor search lies in repeatedly querying this tree
to find the k Nearest Neighbors of each point in the minority
class. This bottleneck is a good target for parallelization. To
do this, we broadcasted the KDTree object to MapPartitions
function. This greatly reduces the time taken to produce all
the k nearest neighbors for a point. The diagram showing the
data transfer for the exact nearest neighbors algorithm in Exact
SMOTE can be seen in Fig. 2.

To use a KDTree, the tree and the minority set would both
have to fit in memory, however this is true with SMOTE-BD as
well. Therefore, any dataset that can be used with SMOTE-
BD, can be implemented more efficiently with a version of
SMOTE that uses a KDTree. Fortunately, spark allows for
broadcast variables of up to 8GB.



Fig. 1: KDTree Initialization

Fig. 2: NearestNeighbors Data Transfer

D. Exact ENN

The concept of ENNs was first proposed in 1972 [11].
We use this technique to both undersample the majority
data before SMOTE and undersample the minority data after
SMOTE. ENN is helpful when removing noise (useless and
misleading information) from a input class (either minority
or majority). It works by removing a point from the dataset
if it misclassified by it’s nearest neighbors (usually 3). For
example, if a point is in the majority class, but all of it’s 3
closest neighbors are in the minority class, it is removed from
the dataset. We can roughly control the number of removed
data points by adjusting the number of NNs (k), however, it
can be tricky to control accurately. Our ENN implementation
uses KDTree, for the same reasons as suggested in the Exact
SMOTE section. However, in our implementation of ENN,
only the target label has to be broadcasted to the mapPartitions
function, rather than the feature vector. This is because we
only need the target labels of each neighbor to determine if
we should drop the point.

E. Classifiers

The chosen classification baseline for this project is a
DecisionTree [12]. It is easy to use from the PySpark ml
library, and it works well within the PySpark framework.

Moreover, decision trees can automatically select the fea-
ture with the most distinguishing degree as the split, which
can process discrete and continuous variables without any
pre-processing operations such as feature scaling or feature
conversion. Decision trees can also process data with miss-
ing values. Meanwhile, decision trees are a non-parametric
learning method that does not depend on any assumptions
and distributions and is suitable for various types of data.
Ultimately, the new dataset generated by the SMOTE method
will not affect the effect of the decision tree. It will still select
distinguishing features as split points in the new synthetic data.

III. EXPERIMENTAL SET-UP

All experiments were performed on a databricks cluster with
a driver (Standard_DS3_v2) and 10 workers (Standard_F4).

A. Datasets

We have used two datasets in our experiments. Both datasets
are imbalanced, however one dataset is much smaller, allowing
us to test our algorithms before applying them to the large
dataset.

The first dataset used has 11 features and 382,154 rows, and
is available on Kaggle [13]. Its purpose is to predict whether
a customer would have an interest in Vehicle Insurance. The



features of the dataset include Demographics (gender, age,
region code type), Vehicles (vehicle age, damage), Policy
(premium, sourcing channel) and the target label ’Response’.
Particularly, this target label is highly unbalanced, with 62,601
instances of label ’1’ - representing people who are interested
in vehicle insurance and 319,544 instances of label ’0’ -
representing people who are not interested at all. This re-
sults in an imbalance ratio of 4.9:1. The features ’Gender’,
’Vehicle_Age’, ’Vehicle_Damage’ are strings, and therefore
StringIndexer is used to pre-process the data and make sure
that all the features are floats. We have dropped 3 features (’id’,
’Region_Code, ’Policy_Sales_Channel’) from the analysis as
they are all IDs.

The second dataset is on Airline data and is available
on Kaggle [14]. It has 28 features and 123,534,969 rows.
However, for speed we test this dataset on random subsets
of 5,000,000 and 1,000,000 rows. Assume the metrics are
relative to 1,000,000 rows unless mentioned. The target label
is ’Cancelled’, which is 1 when the plane was cancelled
and 0 was the plane was not cancelled. This label has an
imbalance ration of 52:1. All ID features were dropped: ’Can-
cellationCode’, ’FlightNum’, ’TailNum’, & ’UniqueCarrier’.
’Dest’ & ’Origin’ were also dropped due to an inability to
encode these values with distance. The dataset also contained
missing values. These were either imputed with a constant
value (’0’) or mean imputation on the column. Please see the
accompanying code for more details on this.

In the research, datasets used in all methods were divided
into training sets and validation sets according to the same
ratio of 0.7 and 0.3. All random seed parameters were set as
42 to ensure the same partitioning results. This was performed
prior to the application of any SMOTE algorithm to prevent
data leakage.

B. Metrics

In order to test the ’balance score’ of the dataset, the
research chooses Shannon Entropy [15]. Shannon Entropy is a
measure of the amount of uncertainty or information content
in a probability distribution. On a dataset of n instances, if you
have k classes of sizes ci, Shannon Entropy can be computed
as H = −Σk

i=1
ci
n log

ci
n . This will tend towards 0 when

the dataset is very imbalanced, and will tend towards logk
when the classes are balanced. Therefore, we can calculate a
balanced score as Balance = H

logk , which will tend towards
1 for a balanced dataset.

In order to test if balancing the dataset improves classi-
fication metrics, the research chooses chooses the confusion
matrix, which displays the number of true positives (TP),
true negatives (TN), false positives (FP) and false negatives
(FN) produced by the classifier. From this, we can calculate
Accuracy ((TP + TN) / (TP + FN + FP + TN)), Precision
(TP / (TP + FP)), Recall (TP / (TP + FN)), F1-Score ((2 *
Precision * Recall) / (Precision + Recall)) and AUC to measure
the effectiveness of the classifier. In particular, the Recall and
Precision of minority labels will be studied. These metrics will
be calculated for each of the algorithms we produced.

TABLE I: Baseline Metrics (Smaller Dataset)

Metric Value
Balance Score 0.643

Accuracy 0.83
Precision (Minority Class) 0.0

Recall (Minority Class) 0.0
F1-Score 0.761

AUC 0.5

TABLE II: Baseline Metrics (Larger Dataset)

Metric Value
Balance Score 0.134

Accuracy 0.998
Precision (Minority Class) 0.944

Recall (Minority Class) 0.999
F1-Score 0.998

AUC 0.999

The baselines for these metrics are subject to the original
dataset before applying the SMOTE algorithm. They are
determined from a DecisionTree and the balance score as
previously described. The baselines for the smaller dataset can
be seen in Table I. The baselines for the larger dataset be can
seen in Table II:

C. Scalability

In addition to Exact-SMOTE being tested on how well it
improves model performance on imbalanced datasets, we also
want to test how well it scales to big data. In order to do
this, we will time Exact-SMOTE with varying sizes of input
dataset. These sizes are a fraction of the original dataset. They
are: 1

3 ,
1
2 , 1.

D. Models

We will be testing the classification results with a Decision-
Tree model. The DecisionModel is the base model imported
from the pyspark.ml.classification library with default hyper-
parameters.

IV. RESULTS AND DISCUSSION

In this section, we discuss our findings and results from this
research. The results from both the smaller and larger dataset
are presented here. We go into each algorithm in detail.

A. Local-SMOTE

TABLE III: Local-SMOTE Metrics

Dataset Metric Value

Smaller

Balance Score 1.0
Accuracy 0.787

Precision (Minority Class) 0.427
Recall (Minority Class) 0.887

F1-Score 0.812
AUC 0.854

Larger

Balance Score -
Accuracy -

Precision (Minority Class) -
Recall (Minority Class) -

F1-Score -
AUC -



We did not test the larmger dataset on Local-SMOTE due
to memory & time restrictions.

B. Approx-SMOTE

TABLE IV: Approx-SMOTE Metrics

Dataset Metric Value

Smaller

Balance Score 1.0
Accuracy 0.830

Precision (Minority Class) 0.387
Recall (Minority Class) 0.059

F1-Score 0.774
AUC 0.834

Larger

Balance Score -
Accuracy -

Precision (Minority Class) -
Recall (Minority Class) -

F1-Score -
AUC -

We did not test the larger dataset on Approx-SMOTE due to
memory & time restrictions. The Approx-SMOTE algorithm
was interestingly not scalable. We believe that this results from
using a threshold of ’infinity’ in the approxSimilarityJoin()
function.

C. Exact-SMOTE

TABLE V: Exact-SMOTE Metrics

Dataset Metric Value

Smaller

Balance Score 1.0
Accuracy 0.827

Precision (Minority Class) 0.356
Recall (Minority Class) 0.065

F1-Score 0.774
AUC 0.832

Larger

Balance Score 0.476
Accuracy 0.999

Precision (Minority Class) 1.0
Recall (Minority Class) 1.0

F1-Score 0.999
AUC 1.0

Fig. 3: Exact SMOTE Performance

Fig. 3 displays the time taken to run the Exact SMOTE
algorithm with varying dataset sizes. The algorithm not only
performs well on 1,000,000 samples ( 7 mins), it also scales

well, taking an additional 120 seconds to process an extra
670,000 (420 seconds in total) samples compare to 300
seconds with 330,000 samples. The dataset with 5,000,000
records was also tested with Exact-SMOTE. The algorithm
ran in 310.10 seconds.

D. Exact-SMOTE-ENN

TABLE VI: Exact-SMOTE-ENN Metrics

Dataset Metric Value

Smaller

Balance Score 0.859
Accuracy 0.836

Precision (Minority Class) 0.325
Recall (Minority Class) 0.003

F1-Score 0.762
AUC 0.799

Larger

Balance Score 0.089
Accuracy 0.995

Precision (Minority Class) 0.999
Recall (Minority Class) 0.734

F1-Score 0.994
AUC 0.870

The results in Table VI are from applying SMOTE then
ENN (on the minority class) to both datasets. We can also
apply ENN (majority) then SMOTE then ENN (minority)
to the datasets. We applied this to the smalller dataset and
the results are shown in Table VII. Doing this provided
improvements on just the single ENN solution.

TABLE VII: Exact-ENN-SMOTE-ENN (Double ENN) Met-
rics

Dataset Metric Value

Smaller

Balance Score 0.996
Accuracy 0.831

Precision (Minority Class) 0.406
Recall (Minority Class) 0.052

F1-Score 0.772
AUC 0.837

E. Discussion

In summary, Exact-SMOTE perform the best in terms of
scalability. Neither Approx-SMOTE or Local-SMOTE could
compete with the speed at which the nearest neighbors were
calculated in the Exact-SMOTE algorithm. This makes sense
for Local-SMOTE however is an interesting result for Approx-
SMOTE. As mentioned, we believe this to be due to the
threshold of ’infinity’ in approxSimilarityJoin(). This is just
not an efficient enough solution for a SMOTE algorithm.

In terms of classification performance, the Local-SMOTE
performed the best followed by Exact-SMOTE. This is either
due to how imblearn handles categorical data in their SMO-
TENC algorithm, or how they synthesise new results. The new
synthetic data from the imblearn algorithm is likely to more
closely match the original data than our algorithms, which
makes the classification models perform better. All of our
algorithms struggled with Recall performance on the minority
class, which means they were still slightly overpredicting the
majority class, even with the oversampled datasets.



Interestingly, ENN actually undersampled more data than
SMOTE oversampled in the large dataset. The data itself might
not be suitable to undersampling in this manner. It might help
to apply ENN to the majority data several times to remove
more majority points before applying SMOTE. We could also
repeat ENN multiple times after SMOTE to remove any low
quality synthetic samples. This could be done with more time
on the project.

Using the KDTree proved to be a good idea, as it is much
faster than the brute force method. The KDTree has some
drawbacks however, such as not working well with categorical
data. It also degrades in efficiency when the number of dimen-
sions is higher compared to the number of points, although this
isn’t usually a problem in Big Data. Overall, broadcasting the
KDTree proved to improve the SMOTE algorithm for Big data,
and could potentially be used in a more widespread manner
than this paper. Alternative tree structures such as Vantage
point tree could alternatively be used for different distance
metrics that suit more towards categorical data. However, in
KNN-IS, when the test set is large, rather than it all being
stored in memory, it is separated and fed into memory parts
at a time. We did not implement the equivalent of this for
SMOTE. However, with more time this is something we would
like to look into.

V. CONCLUSION

From the results of the research, the SMOTE algorithm
does have significant effect in the handling of imbalanced
data. On the small dataset, Exact-SMOTE caused the precision
rate of the decision tree to increase from 0 to 0.35. On
the scalability test, the global Exact-SMOTE method was
excellent. It processes a dataset with 5,000,000 data points,
in 310 seconds. Although, this may be further improved as
the Databricks cluster is a shared cluster, which means it may
have been busy during the running of the tests. Therefore, this
method designed in this research is a more rapid and scalable
SMOTE method based on the pySpark framework.

This research makes up for the vacancy of the SMOTE
method under the pySpark framework. Meanwhile, the four
algorithms produced in this experiment can handle numerical
and categorical data which can be mapped to a distance
encoding. Finally, in this research Exact-SMOTE and Exact-
ENN, both use the KDTree structure, resulting it greatly
increased speed of returning proximity points and synthez-
ing new data. In this era of booming big data technology,
distributed data processing based on pySpark and larger data
volume are inevitable. The method proposed in this research
can be applied to the identification of credit card fraud, which
is a extremely unbalanced dataset and the data volume is
huge. The method propsed in this research is very suitable for
distributed data processing and unbalanced data processing in
this situation.
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